Şimdi Ara

IŞIK HIZINA ERİŞMEK (2. sayfa)

Daha Fazla
Bu Konudaki Kullanıcılar: Daha Az
2 Misafir - 2 Masaüstü
5 sn
27
Cevap
0
Favori
925
Tıklama
Daha Fazla
İstatistik
  • Konu İstatistikleri Yükleniyor
0 oy
Öne Çıkar
Sayfa: önceki 12
Sayfaya Git
Git
Giriş
Mesaj
  • quote:

    Orjinalden alıntı: bahtiyar0011


    quote:

    Orjinalden alıntı: águila

    Arkadaşlar kafama takılan bir soru var ve bunun cevabını bulmaya çalışıyorum ama malesef bir türlü beynim basmadı bu sorunun cevabını bulmaya. Kesinlikle anlamadığım yada yanlış anladığım veyahut atladığım bir yer var sanırım ama nerde onu bulamıyorum, bilgili arkadaşların bu konuda beni aydınlatmasını rica ediyorum.

    Şimdi deniyorki kütlesi olan hiçbir nesne ışık hızına erişemez. Işık dediğimiz varlık fotonlardan meydana geliyor ve fotonlarında kütlesiz oldukları söyleniyor ama fotonun aynı zamanda bir ağırlığıda mevcut. KAYNAK:( BİLİM VE TEKNİK DERGİSİ NİSAN SAYISINDA ANLATILAN GENEL GÖRELİK KONUSU) Ağırlığın formülü ise KÜTLExYERÇEKİMİ KUVVETİ. bu formüle dayanarak o zaman fotonunda ağırlığının varolmasından dolayı bi kütlesininde varolması gerekmiyormu:S

    SAÇMA Bİ SORUMU OLDU?

    http://forum.donanimhaber.com/m_19318227/mpage_1/key_//tm.htm#19318227

    faydalı olacaktır

    benim açıklamalarıma bak tekrar etmek istemiyorum

    arkadaşım kusura bakma


    hocam verdiğin linkteki postların tamamını okudum ve tatmin olduğum söylenemez. (kızmasın inşallah) internette bu konuları ararken bulduğum bi yazıyı burada sizinle palaşmak istiyorum



    Fotonlar



    Bilim adamları, ışığın bir tür elektromanyetik dalga olduğunu düşünüyorlardı ve içleri rahattı; ta ki Max Planck bazı deneylerinde ışığın tanecikmiş gibi davrandığını farkedinceye dek. Işık sanki devamlı dalgalar değil de, enerji paketcikleri gibi geliyordu. Einstein ve Planck bu enerji paketlerini ışık quantumu veya foton olarak adlandırdılar. Fotonlar sanki birer parçacıklarmış gibi davranıyordu. Relativite teorisine göre, bir parçacığın ışık hızında gidebilmesi için kütlesinin sıfıra eşit olması gerekiyordu! Demek ki ışığın enerjisi sadece kinetik enerjiydi; kütlesinden kaynaklanan hiçbir enerjisi yoktu. Einstein o güne dek açıklanamamış olan fotoelektrik olayını bu kavramla açıkladıktan sonra, bilim adamlarının ağızında yeniden 'ışık nedir?' sorusu gündeme gelmişti. Eğer ışık dediğimiz olgu parçacıklardan oluşuyorsa, frekans veya dalgaboyunun ne anlamı var acaba? Aslında sorulması gereken en iyi soru: "ışık gerçekten nedir?" Cevap: 'Hem dalga, hem parçacık!'
    Işığın bazı özellikleri sadece dalga konsepti ile açıklanırken (girişim veya kırınım gibi), bazı özellikleri ise sadece foton konsepti ile açıklanabiliyor (Fotoelektrik olay veya atomların enerji soğurması ve salması gibi).
    "Foton nedir?" sorusuna cevap ararken bir çok değişik perspektiften bakan cevaba gerek vardır. En bariz özelliklerini şöyle sayabiliriz: Durgun kütlesi sıfırdır; ışık hızıyla gider; etkileşimlere parçacık olarak girebilir ancak dalga olarak yayılır; E=h x f, p=h/l ve E=pc bağıntılarına uyar; kütlesi sıfır olduğu halde diğer parçacıklar gibi kütle çekiminden bile etkilenir.
    Farklı bir açıdan, fotonların nasıl ortaya çıktıklarını (bremsstrahlung proseslerinde olduğu gibi) veya bir yerden başka bir yere giderken nasıl hareket ettiklerini anlatabiliriz.


    Temel fizikteki yerlerini bile belirtebiliriz: Fotonlar elektromagnetik kuvveti iletirler. Bu açıdan bakılınca, iki elektrik yükü fotonları "takas ederek" etkileşir (fotonlar bir yükten yayınlanır, öteki yük tarafından soğurulur). Bu fotonlar genellikle hayali veya "virtüel" (sezilgen) fotonlardır, adları sadece teorik fiziğin matematiksel formalizminde anılır, fakat gerçek fotonların sahip oldukları bütün özellikleri taşırlar. Bilinen hiç bir cevabı olmayan bir soru, fotonun iç yapısının ne olduğudur. Foton nelerden yapılmadır? Mahiyetlerinin, gerçek matematiksel anlamda, "nokta" olduğuna inandığımız foton ve elektron gibi bazı elemanter (en basit yapıtaşı) parçacıklar bulunuyor: Fiziksel hiç bir büyükleri yoktur ve parçalardan oluşan iç yapıları olmadığından parçalarına ayrılamazlar.
    Fotonla ilgili olarak cevaplanması en zor soru, onun bir parçacık mı yoksa dalga mı olduğu sorusudur. Yukarda sayılan özelliklere sahip bu fiziksel parçacık, onunkinden çok farklı özellikler listesine sahip elektromagnetik dalgadan daha mı gerçektir?
    Burada bir paradoksun varlığı aşikar. Girişim ve kırınım içeren bazı deneyler elektromagnetik radyasyonun (ışımanın) deney düzeneğiyle dalgalar olarak etkileştiklerini gösteriyor; fotoelektrik etki ve Compton saçılması gibi başka deneyler de elektromagnetik radyasyonun foton olarak bilinen parçacık-gibi quantumlar şeklinde etkileştiğini gösteriyor. Şurası kesin ki dalga ve parçacık yorumları uyumlu değildir: Parçacıklar enerjilerini konsantre paketler halinde verirken bir dalganın enerjisi bütün dalga cephesi üzerinde düzgün olarak yayılır. Örneğin ışığı sadece parçacıklar olarak ele alırsak çift-yarık deneyinde gözlenen girişim desenini açıklamak zor olur. Bir parçacık ya bir yarıktan ya da diğerinden gitmelidir; sadece bir dalga cephesi ikiye ayrılarak her iki yarıktan geçer ve sonra birleşir.
    Dalga ve parçacık yorumlarını geçerli fakat birbirini dışlayan alternatifler olarak kabul edersek, bir kaynaktan çıkan ışığın ya dalga ya da parçacık olarak yayılması gerektiğini de kabul etmemiz gerekir. Kaynak ne tür ışık (dalga veya parçacık) üretmesi gerektiğini nasıl bilebilir? Farz edelim ki kaynağın bir tarafına çift-yarık düzeneği diğer tarafına da fotoelektrik düzeneği koyduk. Çift-yarık düzeneği tarafına yayılan ışık dalga gibi davranır, fotosel tarafına yayılan ışık parçacık gibi davranır. Kaynak hangi yöne dalga ve hangi yöne parçacık yayınlayacağını nasıl bildi?
    Belki de tabiatta, hangi deneyi yaptığımızı geriye, kaynağa, haber veren bir tür "gizli kod" var ve kaynak dalga veya parçacık üretmesi gerektiğini geri gelen sinyale göre anlıyor. Yukarıdaki ikili deneyi uzaklardaki bir galaksiden gelen ışıkla tekrarlayalım. Işık bize, kabaca, evrenin yaşı (15.109 sene) kadar uzaktan geliyor olsun. Böyle bir deneyde, bizim laboratuardaki çift-yarık deney düzeneğini alıp yerine fotoelektrik deney düzeneğini koymamız için geçen zaman zarfında, ışığın bu değişikliği kaynağa haber vermesi mümkün olamazdı; ancak yıldız ışığının hem çift-yarık girişimini hem de fotoelektrik etkiyi oluşturduğunu yine gözlerdik. O halde rahatsız edici bir sonucun kapanına kısıldık: Işık ne parçacık ne de dalga; her nasılsa hem parçacık hem de dalga ve yapmakta olduğumuz deneyin türüne göre bize her defasında sadece bir yüzünü gösteriyor: Parçacık-tipi bir deneyde parçacık yüzünü ve dalga-tipi bir deneyde dalga yüzünü. Bizim ışığı ya dalga ya da parçacık olarak sınıflandırmakta başarısız oluşumuzun nedeni, ışığın tabiatını anlamaktaki başarısızlığımızdan ziyade, sınırlı kelime hazinemizin, basit bir dalga veya parçacıktan daha zarif ve daha esrarengiz bir olguyu tanımlamaktaki yetersizliğidir.
    Çift-yarık desenini gözlemek için gözümüzü veya bir fotoğrafik filmi kullanırsak durum daha da zorlaşır. Hem gözümüz hem de film bireysel fotonlara tepki verir. Bir tek foton bir retina hücresi tarafından soğurulduğunda, beyne kadar giden bir elektrik impulsu meydana gelir (tabi, görme böyle bir çok impulstan oluşur). Bir tek foton film tarafından soğurulduğunda fotoğrafik emülsiyonun minik bir bölgesi kararır; tam bir resim için çok fazla sayıda minik bölgenin kararması gerekir. Bir an için, fotonları soğurur ve kararırken filmin tek tek minik bölgelerini görebildiğimizi farz edelim ve bu deneyi, fotonlar arasında nisbeten uzun zaman aralıklarının bulunduğu, çok zayıf bir ışık kaynağıyla yapalım. Önce bir bölgeciğin, ardından diğerinin, sonra bir başkasının ... karardığını ve ancak çok sayıda foton filme düştükten sonra girişim deseninin ortaya çıkmaya başladığını görecektik. Alternatif olarak, çift-yarık deneyinin dalga yorumu, ekrana çarpan dalga cephelerinin net elektrik alanını, iki yarıktan geçmek üzere gelen dalga cephelerinin kısmi elektrik alanlarını üst üste bindirme yoluyla hesaplayabileceğimizi düşündürüyor. Bu durumda birleşik dalganın şiddetini veya gücünü ilgili denklemlerle bulabilirdik. Bileşke şiddetin de çift-yarık deneyindeki gibi minimum ve maksimumlar göstermesini beklerdik.
    Özetle, girişim deseninin kaynağının ve ortaya çıkışının doğru açıklaması dalga yorumunda, film üzerindeki desenin oluşumunun doğru açıklaması da parçacık yorumundadır. Bizim sınırlı kelime hazinemiz ve her günkü deneyimlerimize göre bu iki açıklama aynı anda doğru olamaz, elektromagnetik ışımanın tam bir açıklamasını vermek üzere ikisi bir şekilde birleştirilmelidir.
    Bu dalga-parçacık ikili tabiat bilmecesi basit bir açıklamayla çözülemez. Quantum teorisi ortaya atıldığından beri fizikçiler ve filozoflar bu sorun üzerinde kafa patlattılar. Diyebileceğimizin en iyisi, ne dalga ne de parçacık yorumunun aynı anda tamamen doğru olmadığı, fiziksel olguları tam olarak açıklamak için ikisine de gerek duyduğumuz ve bunların birbirlerini tamamladıklarıdır. Çift-yarık deneyinde şu şekilde akıl yürütebiliriz: Bir ışıma "kaynağı" ile elektromagnetik alan arasındaki etkileşim quantizedir (sürekli değil, kesik kesiktir) ve atomları bireysel fotonlar yayan kaynaklar olarak düşünebiliriz. Deneyin diğer tarafındaki, fotoğrafik film tarafındaki, etkileşim de quantizedir ve atomların bireysel fotonları soğurduklarını tasavvur edebiliriz. İkisinin arasında, elektromagnetik enerji düzgün ve sürekli olarak bir dalga gibi ilerler ve dalga-gibi davranış sergiler (girişim veya kırınım). Çift-yarığın etkisi dalganın ilerleyişini değiştirmektir (örneğin, düzlem dalgadan karakteristik çift-yarık desenine). Dalga şiddetinin büyük olduğu yerlerde, fotoğraf filmi çok sayıda fotonun varlığını haber verir; şiddetin küçük olduğu yerlerde az sayıda foton gözlenir. Bir dalganın şiddeti genliğinin karesiyle orantılı olduğundan şu bağıntı yazılır:
    fotonları gözleme olasılığı µ (elektrik alan genliği)2
    İşte bu ifade dalga davranışı ile parçacık davranışı arasındaki nihai ilişkiyi sağlar. Önceleri klasik parçacıklar olarak düşünülen elektron gibi nesnelerin dalga ve parçacık davranışlarını da benzer bir ifade birbirine bağlar.


    Kalınla yazılan yerdeki açıklamaysa tam bir muamma aslında bunun böyle olmadığı ama sadece böyle kabul etmek için bu şekilde birleştirildiğini savunan bi yazı.

    benim buradan çıkardığım sonuç fotonun kütlesi yoktur diye birşey yok ama var diyede birşey yok




  • Kalın yer ile yazılan tamamen Schrödinger in dalga denkleminin alıntısıdır.
  • quote:

    Orjinalden alıntı: Burak[Alper]

    Kalın yer ile yazılan tamamen Schrödinger in dalga denkleminin alıntısıdır.



    valla ne olduğunu teknik olarak bilmem benim ilgilendiğim kısım sonuç kısmı ve çıkarttığım sonucuda yazdım oraya. şahsi görüşüm bu benim bilmem siz ne düşünüyosunuz ama
  • "Işık hızında seyreden bir araba farlarını(ışıkları) yaktığında ne olur "

    Diye bir soru görmüştüm o aklıma geldi
  • quote:

    Orjinalden alıntı: águila

    Fotonlar sanki birer parçacıklarmış gibi davranıyordu. Relativite teorisine göre, bir parçacığın ışık hızında gidebilmesi için kütlesinin sıfıra eşit olması gerekiyordu! Demek ki ışığın enerjisi sadece kinetik enerjiydi; kütlesinden kaynaklanan hiçbir enerjisi yoktu. Einstein o güne dek açıklanamamış olan fotoelektrik olayını bu kavramla açıkladıktan sonra, bilim adamlarının ağızında yeniden 'ışık nedir?' sorusu gündeme gelmişti. Eğer ışık dediğimiz olgu parçacıklardan oluşuyorsa, frekans veya dalgaboyunun ne anlamı var acaba? Aslında sorulması gereken en iyi soru: "ışık gerçekten nedir?" Cevap: 'Hem dalga, hem parçacık!'
    Işığın bazı özellikleri sadece dalga konsepti ile açıklanırken (girişim veya kırınım gibi), bazı özellikleri ise sadece foton konsepti ile açıklanabiliyor (Fotoelektrik olay veya atomların enerji soğurması ve salması gibi).
    "Foton nedir?" sorusuna cevap ararken bir çok değişik perspektiften bakan cevaba gerek vardır. En bariz özelliklerini şöyle sayabiliriz: Durgun kütlesi sıfırdır; ışık hızıyla gider; etkileşimlere parçacık olarak girebilir ancak dalga olarak yayılır; E=h x f, p=h/l ve E=pc bağıntılarına uyar; kütlesi sıfır olduğu halde diğer parçacıklar gibi kütle çekiminden bile etkilenir.




    hocam kendi eklediğin yazıdada sık sık fotonun kütlesi yoktur diyor(kalınla işaretledim)

    senin anlamadığın nokta e=mc^2 denkliği bu formul şunu der;

    1. her kütlenin bir enerji karşılığı vardır ve o miktarda enerjiye dönüştürülebilir(nükleer reaksiyonlarda ortaya çıkan enerji bu formülle kaybolan kütle üzerinden hesaplanır

    2.her enerjinin bir kütle karşılığı vardır ve bu enerjiye sahip parçacık e=mc^2 eşitliğinin öngördüğü kütle miktarına sahipmiş gibi davranır lakin sahip değildir (benim param yok ama evim var bankada bana zenginmişim, param varmış gibi muamele yapıp kredi veriyor)

    (ayrıca hocam kusura bakma ama fizik ihtisas isteyen zor bir dal eğer fizik eğitimi almamışsan bir miktar genel kültür edinip bunla yetinmek lazım herşeyin nasıl işlediğini mantığını anlamak için fizikçi olmak yetmiyor birde fiziğin o alanında ihtisas yapmak gerektiriyor)




  • quote:

    Orjinalden alıntı: águila
    ....
    Şimdi deniyorki kütlesi olan hiçbir nesne ışık hızına erişemez. Işık dediğimiz varlık fotonlardan meydana geliyor ve fotonlarında kütlesiz oldukları söyleniyor ama fotonun aynı zamanda bir ağırlığıda mevcut. KAYNAK:( BİLİM VE TEKNİK DERGİSİ NİSAN SAYISINDA ANLATILAN GENEL GÖRELİK KONUSU) Ağırlığın formülü ise KÜTLExYERÇEKİMİ KUVVETİ. bu formüle dayanarak o zaman fotonunda ağırlığının varolmasından dolayı bi kütlesininde varolması gerekmiyormu:S

    SAÇMA Bİ SORUMU OLDU?


    Kütlesi olan birşey yer çekimine maruz kalırdı elbette. O zaman her ışık demeti yere doğru hareket ederdi, Güneş en büyük yer çekimine sahip olduğundan ışıkları bizlere gelmez ya kendi içine dönerdi yada etrafında dönerdi. Ancak şunu biliyorum ışık düştüğü bir yere basınç uygular sebebini bilen varsa ve anlatırsa sevinirim (spot lambalarda kendiniz deneyebilirsiniz)




  • quote:

    Orjinalden alıntı: Antor


    quote:

    Orjinalden alıntı: águila
    ....
    Şimdi deniyorki kütlesi olan hiçbir nesne ışık hızına erişemez. Işık dediğimiz varlık fotonlardan meydana geliyor ve fotonlarında kütlesiz oldukları söyleniyor ama fotonun aynı zamanda bir ağırlığıda mevcut. KAYNAK:( BİLİM VE TEKNİK DERGİSİ NİSAN SAYISINDA ANLATILAN GENEL GÖRELİK KONUSU) Ağırlığın formülü ise KÜTLExYERÇEKİMİ KUVVETİ. bu formüle dayanarak o zaman fotonunda ağırlığının varolmasından dolayı bi kütlesininde varolması gerekmiyormu:S

    SAÇMA Bİ SORUMU OLDU?



    Kütlesi olan birşey yer çekimine maruz kalırdı elbette. O zaman her ışık demeti yere doğru hareket ederdi, Güneş en büyük yer çekimine sahip olduğundan ışıkları bizlere gelmez ya kendi içine dönerdi yada etrafında dönerdi. Ancak şunu biliyorum ışık düştüğü bir yere basınç uygular sebebini bilen varsa ve anlatırsa sevinirim (spot lambalarda kendiniz deneyebilirsiniz)

    hocam tekrar yaptım özürdilerim ama devamını oku
    e=mc^2 denkliği bu formul şunu der;

    1. her kütlenin bir enerji karşılığı vardır ve o miktarda enerjiye dönüştürülebilir(nükleer reaksiyonlarda ortaya çıkan enerji bu formülle kaybolan kütle üzerinden hesaplanır

    2.her enerjinin bir kütle karşılığı vardır ve bu enerjiye sahip parçacık e=mc^2 eşitliğinin öngördüğü kütle miktarına sahipmiş gibi davranır lakin sahip değildir (benim param yok ama evim var bankada bana zenginmişim, param varmış gibi muamele yapıp kredi veriyor)
    devamı
    ışık zaten kütle çekiminden etkilenir nedeni yukarda yazanlar

    güneşin ışığının dışarı çıkması meselesi ise şöyle;güneşin yüzeyindeki kütle çekim kuvveti ışığı tutacak kadar güçlü değil ama karadeliklerin yüzeyindeki kütle çekim yeteri kadar büyük

    1924 yılında yaşanan tam güneş tutulması incelenerek arka fondaki yıldız ışıklarının güneş yakınlarından geçerken ışığın eğildiği gözlemlendi bu hem ışığın kütle çekiminden etkilendiğini gösterdi hemde bunu iddaa
    eden izafiyet teorisini deneysel olarak ispatladı



    < Bu mesaj bu kişi tarafından değiştirildi bahtiyar0011 -- 9 Mayıs 2008; 18:25:53 >




  • 
Sayfa: önceki 12
Sayfaya Git
Git
- x
Bildirim
mesajınız kopyalandı (ctrl+v) yapıştırmak istediğiniz yere yapıştırabilirsiniz.